In this article, the topic of Order-4 hexagonal tiling will be addressed, which has sparked great interest and debate in different areas. Order-4 hexagonal tiling is a topic that has captured the attention of academics, specialists, and the general public due to its relevance in today's society. From its origins to the present, Order-4 hexagonal tiling has been the object of study, analysis and reflection, which has led to the generation of different theories, approaches and opinions on the matter. Throughout this article, the most relevant aspects of Order-4 hexagonal tiling will be explored, as well as its impact on various aspects of daily life. Likewise, the different perspectives that exist around Order-4 hexagonal tiling will be examined, with the aim of offering a broad and comprehensive vision of the topic.
Order-4 hexagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 64 |
Schläfli symbol | {6,4} |
Wythoff symbol | 4 | 6 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | , (*642) |
Dual | Order-6 square tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-4 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,4}.
This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *222222 with 6 order-2 mirror intersections. In Coxeter notation can be represented as , removing two of three mirrors (passing through the hexagon center). Adding a bisecting mirror through 2 vertices of a hexagonal fundamental domain defines a trapezohedral *4422 symmetry. Adding 3 bisecting mirrors through the vertices defines *443 symmetry. Adding 3 bisecting mirrors through the edge defines *3222 symmetry. Adding all 6 bisectors leads to full *642 symmetry.
![]() *222222 |
![]() *443 |
![]() *3222 |
![]() *642 |
There are 7 distinct uniform colorings for the order-4 hexagonal tiling. They are similar to 7 of the uniform colorings of the square tiling, but exclude 2 cases with order-2 gyrational symmetry. Four of them have reflective constructions and Coxeter diagrams while three of them are undercolorings.
1 color | 2 colors | 3 and 2 colors | 4, 3 and 2 colors | ||||
---|---|---|---|---|---|---|---|
Uniform Coloring |
![]() (1111) |
![]() (1212) |
![]() (1213) |
![]() (1113) |
![]() (1234) |
![]() (1123) |
![]() (1122) |
Symmetry | (*642) ![]() ![]() ![]() ![]() ![]() |
(*662) ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
= (*663) ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(*3333) ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |||
Symbol | {6,4} | r{6,6} = {6,4}1/2 | r(6,3,6) = r{6,6}1/2 | r{6,6}1/4 | |||
Coxeter diagram |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The regular map {6,4}3 or {6,4}(4,0) can be seen as a 4-coloring on the {6,4} tiling. It also has a representation as a petrial octahedron, {3,4}π, an abstract polyhedron with vertices and edges of an octahedron, but instead connected by 4 Petrie polygon faces.
This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram , progressing to infinity.
*n62 symmetry mutation of regular tilings: {6,n} | ||||||||
---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | ||||||
![]() {6,2} |
![]() {6,3} |
![]() {6,4} |
![]() {6,5} |
![]() {6,6} |
![]() {6,7} |
![]() {6,8} |
... | ![]() {6,∞} |
This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram , with n progressing to infinity.
*n42 symmetry mutation of regular tilings: {n,4} | |||||||
---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
24 | 34 | 44 | 54 | 64 | 74 | 84 | ...∞4 |
Symmetry mutation of quasiregular tilings: (6.n)2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *6n2 |
Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||||||
*632 |
*642 |
*652 |
*662 |
*762 |
*862 ... |
*∞62 |
| ||||
Quasiregular figures configuration |
![]() 6.3.6.3 |
![]() 6.4.6.4 |
![]() 6.5.6.5 |
![]() 6.6.6.6 |
![]() 6.7.6.7 |
![]() 6.8.6.8 |
![]() 6.∞.6.∞ |
6.∞.6.∞ | |||
Dual figures | |||||||||||
Rhombic figures configuration |
![]() V6.3.6.3 |
![]() V6.4.6.4 |
![]() V6.5.6.5 |
![]() V6.6.6.6 |
V6.7.6.7 |
![]() V6.8.6.8 |
![]() V6.∞.6.∞ |
Uniform tetrahexagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*642) (with (*662), (*443) , (*3222) index 2 subsymmetries) (And (*3232) index 4 subsymmetry) | |||||||||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
Uniform duals | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
Alternations | |||||||||||
(*443) |
(6*2) |
(*3222) |
(4*3) |
(*662) |
(2*32) |
+ (642) | |||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
Uniform hexahexagonal tilings | ||||||
---|---|---|---|---|---|---|
Symmetry: , (*662) | ||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
{6,6} = h{4,6} |
t{6,6} = h2{4,6} |
r{6,6} {6,4} |
t{6,6} = h2{4,6} |
{6,6} = h{4,6} |
rr{6,6} r{6,4} |
tr{6,6} t{6,4} |
Uniform duals | ||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 |
Alternations | ||||||
(*663) |
(6*3) |
(*3232) |
(6*3) |
(*663) |
(2*33) |
+ (662) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||
h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} |
Similar H2 tilings in *3232 symmetry | ||||||||
---|---|---|---|---|---|---|---|---|
Coxeter diagrams |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||||
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() | |||||
Vertex figure |
66 | (3.4.3.4)2 | 3.4.6.6.4 | 6.4.6.4 | ||||
Image | ![]() |
![]() |
![]() |
![]() | ||||
Dual | ![]() |
![]() |
Uniform tilings in symmetry *3222 | ||||
---|---|---|---|---|
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | ||
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |