In today's world, User space and kernel space has become a topic of increasing interest to a wide audience. With the advancement of technology and globalization, User space and kernel space has become increasingly relevant in our daily lives. Whether as a social phenomenon, a historical figure or a contemporary concept, User space and kernel space has captured the attention of many people around the world. In this article, we will explore different aspects of User space and kernel space and analyze its impact on today's society. Furthermore, we will examine its evolution over time and its role in different cultural contexts. Through this exploration, we hope to shed light on the importance and relevance of User space and kernel space today.
This article needs additional citations for verification. (October 2012) |
A modern computer operating system usually uses virtual memory to provide separate address spaces or separate regions of a single address space, called user space and kernel space.[1][a] Primarily, this separation serves to provide memory protection and hardware protection from malicious or errant software behaviour.
Kernel space is strictly reserved for running a privileged operating system kernel, kernel extensions, and most device drivers. In contrast, user space is the memory area where application software and some drivers execute, typically one address space per process.
The term user space (or userland) refers to all code that runs outside the operating system's kernel.[2] User space usually refers to the various programs and libraries that the operating system uses to interact with the kernel: software that performs input/output, manipulates file system objects, application software, etc.
Each user space process normally runs in its own virtual memory space, and, unless explicitly allowed, cannot access the memory of other processes. This is the basis for memory protection in today's mainstream operating systems, and a building block for privilege separation. A separate user mode can also be used to build efficient virtual machines – see Popek and Goldberg virtualization requirements. With enough privileges, processes can request the kernel to map part of another process's memory space to its own, as is the case for debuggers. Programs can also request shared memory regions with other processes, although other techniques are also available to allow inter-process communication.
User mode | User applications | bash, LibreOffice, GIMP, Blender, 0 A.D., Mozilla Firefox, ... | ||||
---|---|---|---|---|---|---|
System components | init daemon: OpenRC, runit, systemd... |
System daemons: polkitd, smbd, sshd, udevd... |
Window manager: X11, Wayland, SurfaceFlinger (Android) |
Graphics: Mesa, AMD Catalyst, ... |
Other libraries: GTK, Qt, EFL, SDL, SFML, FLTK, GNUstep, ... | |
C standard library | fopen , execv , malloc , memcpy , localtime , pthread_create ... (up to 2000 subroutines)glibc aims to be fast, musl aims to be lightweight, uClibc targets embedded systems, bionic was written for Android, etc. All aim to be POSIX/SUS-compatible. | |||||
Kernel mode | Linux kernel | stat , splice , dup , read , open , ioctl , write , mmap , close , exit , etc. (about 380 system calls)The Linux kernel System Call Interface (SCI), aims to be POSIX/SUS-compatible[3] | ||||
Process scheduling subsystem | IPC subsystem | Memory management subsystem | Virtual files subsystem | Networking subsystem | ||
Other components: ALSA, DRI, evdev, klibc, LVM, device mapper, Linux Network Scheduler, Netfilter Linux Security Modules: SELinux, TOMOYO, AppArmor, Smack | ||||||
Hardware (CPU, main memory, data storage devices, etc.) |
The most common way of implementing a user mode separate from kernel mode involves operating system protection rings. Protection rings, in turn, are implemented using CPU modes. Typically, kernel space programs run in kernel mode, also called supervisor mode; normal applications in user space run in user mode.
Some operating systems are single address space operating systems—they have a single address space for all user-mode code. (The kernel-mode code may be in the same address space, or it may be in a second address space). Other operating systems have a per-process address space, with a separate address space for each user-mode process.
Another approach taken in experimental operating systems is to have a single address space for all software, and rely on a programming language's semantics to make sure that arbitrary memory cannot be accessed – applications cannot acquire any references to the objects that they are not allowed to access.[4][5] This approach has been implemented in JXOS, Unununium as well as Microsoft's Singularity research project.