In today's world, Hexamethylphosphoramide is a topic that has captured the attention of many people in different parts of the world. From its impact on society to its influence on popular culture, Hexamethylphosphoramide has become a topic of interest for those seeking to better understand the world around them. As Hexamethylphosphoramide continues to evolve and change, it is crucial to explore its many facets and understand how it affects our daily lives. In this article, we will address different aspects related to Hexamethylphosphoramide and analyze its importance in various contexts.
![]() | |
![]() | |
Names | |
---|---|
Preferred IUPAC name
Hexamethylphosphoric triamide[3] | |
Other names | |
Identifiers | |
3D model (JSmol)
|
|
1099903 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.010.595 |
EC Number |
|
3259 | |
KEGG | |
PubChem CID
|
|
RTECS number |
|
UNII | |
UN number | 2810 3082 |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C6H18N3OP | |
Molar mass | 179.20 g/mol |
Appearance | colorless liquid[4] |
Odor | aromatic, mild, amine-like[4] |
Density | 1.03 g/cm3 |
Melting point | 7.20 °C (44.96 °F; 280.35 K) |
Boiling point | 232.5 °C (450.5 °F; 505.6 K) CRC[5] |
miscible[4] | |
Vapor pressure | 0.03 mmHg (4.0 Pa) at 20 °C[4] |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards
|
Suspected Carcinogen[4] |
GHS labelling: | |
![]() | |
Danger | |
H340, H350 | |
P201, P202, P281, P308+P313, P405, P501 | |
Flash point | 104.4 °C (219.9 °F; 377.5 K) |
NIOSH (US health exposure limits): | |
PEL (Permissible)
|
none[4] |
REL (Recommended)
|
Ca[4] |
IDLH (Immediate danger)
|
Ca [4] |
Safety data sheet (SDS) | Oxford MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
|
Hexamethylphosphoramide, often abbreviated HMPA, is a phosphoramide (an amide of phosphoric acid) with the formula 3PO. This colorless liquid is used as a solvent in organic synthesis.
HMPA is the oxide of tris(dimethylamino)phosphine, P(NMe2)3. Like other phosphine oxides (such as triphenylphosphine oxide), the molecule has a tetrahedral core and a P=O bond that is highly polarized, with significant negative charge residing on the oxygen atom.
Compounds containing a nitrogen–phosphorus bond typically are degraded by hydrochloric acid to form a protonated amine and phosphate.
It dissolves alkali metal salts[6] and alkali metals, forming blue solutions which are stable for a few hours. Solvated electrons are present in these blue solutions.[7]
HMPA is a specialty solvent for polymers, gases, and organometallic compounds. It improves the selectivity of lithiation reactions by breaking up the oligomers of lithium bases such as butyllithium. Because HMPA selectively solvates cations, it accelerates otherwise slow SN2 reactions by generating more bare anions. The basic nitrogen centers in HMPA coordinate strongly to Li+.[8]
HMPA is a ligand in the useful reagents based on molybdenum peroxide complexes, for example, MoO(O2)2(HMPA)(H2O) is used as an oxidant in organic synthesis.[9]
Dimethyl sulfoxide can often be used in place of HMPA as a cosolvent. Both are strong hydrogen bond acceptors, and their oxygen atoms bind metal cations. Other alternatives to HMPA include the N,N′-tetraalkylureas DMPU (dimethylpropyleneurea)[10][11] or DMI (1,3-dimethyl-2-imidazolidinone).[12] Tripyrrolidinophosphoric acid triamide (TPPA) has been reported to be a good substitute reagent for HMPA in reductions with samarium diiodide[13] and as a Lewis base additive to many reactions involving samarium ketyls.[14]
HMPA is only mildly toxic but has been shown to cause cancer in rats.[8] HMPA can be degraded by the action of hydrochloric acid.
Tripyrrolidinophosphoric acid triamide (TPPA) can replace carcinogenic HMPA as a Lewis basic additive in many reactions involving samarium ketyls. In most cases, yields and selectivities of cyclizations of (het)aryl, alkenyl, and alkynyl ketones are similar.