In this article, we will explore the impact of Citrulline on contemporary society. Citrulline has been the subject of numerous studies and discussions, generating conflicting opinions and passionate debates. Since its inception, Citrulline has captured the attention of researchers, academics and professionals from various areas, becoming a topic of universal interest. In order to fully understand its influence, we will examine its origins, evolution and repercussions on different aspects of daily life. Likewise, we will analyze society's perceptions and attitudes towards Citrulline, as well as its impact in the cultural, economic and political sphere. Through this exhaustive analysis, we aim to shed light on a topic that continues to be the subject of analysis and reflection today.
![]() | |
![]() | |
Names | |
---|---|
IUPAC name
2-Amino-5-(carbamoylamino)pentanoic acid[1]
| |
Identifiers | |
| |
3D model (JSmol)
|
|
1725417, 1725415 D, 1725416 L | |
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.006.145 |
EC Number |
|
774677 L | |
KEGG | |
MeSH | Citrulline |
PubChem CID
|
|
UNII |
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C6H13N3O3 | |
Molar mass | 175.188 g·mol−1 |
Appearance | White crystals |
Odor | Odourless |
log P | −1.373 |
Acidity (pKa) | 2.508 |
Basicity (pKb) | 11.489 |
Thermochemistry | |
Heat capacity (C)
|
232.80 J K−1 mol−1 |
Std molar
entropy (S⦵298) |
254.4 J K−1 mol−1 |
Related compounds | |
Related alkanoic acids
|
|
Related compounds
|
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
|
The organic compound citrulline is an α-amino acid.[2] Its name is derived from citrullus, the Latin word for watermelon. Although named and described by gastroenterologists since the late 19th century, it was first isolated from watermelon in 1914 by Japanese researchers Yatarō Koga (古賀彌太郎) and Ryō Ōtake (大嶽了)[3][4] and further codified by Mitsunori Wada of Tokyo Imperial University in 1930.[5][6][7] It has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. It is a key intermediate in the urea cycle, the pathway by which mammals excrete ammonia by converting it into urea. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase.[8]
Citrulline can be derived from:
Citrulline is made from ornithine and carbamoyl phosphate in one of the central reactions in the urea cycle. It is also produced from arginine as a byproduct of the reaction catalyzed by NOS family (NOS; EC 1.14.13.39).[9] It is also prevalent in trichohyalin at the inner root sheath and medulla of hair follicles, where it is synthesized from arginine.[10] Arginine is first oxidized into N-hydroxyl-arginine, which is then further oxidized to citrulline concomitant with release of nitric oxide.
Citrulline is also made by enterocytes of the small intestine.[2][11]
Citrulline is a metabolic intermediate within the urea cycle, which is the pathway by which mammals excrete ammonia by converting it into urea. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase. In the yeast species Saccharomyces cerevisiae, citrulline is a metabolic intermediate in the latter, cytosolic half of the arginine biosynthesis pathway.[12]
Several proteins contain citrulline as a result of a post-translational modification. These citrulline residues are generated by a family of enzymes called peptidylarginine deiminases (PADs), which convert arginine into citrulline in a process called citrullination or deimination with the help of calcium ions. Proteins that normally contain citrulline residues include myelin basic protein (MBP), filaggrin, and several histone proteins, whereas other proteins, such as fibrin and vimentin are susceptible to citrullination during cell death and tissue inflammation.
Circulating citrulline concentration is a biomarker of intestinal functionality.[13][14]
L-citrulline is sold as a dietary supplement, usually in powder form. Advocates suggest that since L-citrulline boosts nitric oxide production, helping arterial function and thus blood flow throughout the body, this might be helpful in treating or preventing various ailments.
These assertions are based on animal studies, and like most dietary supplement claims have not be endorsed by the Food and Drugs Administration.[15]
L-citrulline is added to certain energy drinks such as Reign and touted for its thermogenic effects.[16]