Trigonometric substitution

In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.

Case I: Integrands containing a2 − x2

Let x = a sin ⁡ θ , {\displaystyle x=a\sin \theta ,} and use the identity 1 − sin 2 ⁡ θ = cos 2 ⁡ θ . {\displaystyle 1-\sin ^{2}\theta =\cos ^{2}\theta .}

Examples of Case I

Geometric construction for Case I Example 1

In the integral

∫ d x a 2 − x 2 , {\displaystyle \int {\frac {dx}{\sqrt {a^{2}-x^{2}}}},}

we may use

x = a sin ⁡ θ , d x = a cos ⁡ θ d θ , θ = arcsin ⁡ x a . {\displaystyle x=a\sin \theta ,\quad dx=a\cos \theta \,d\theta ,\quad \theta =\arcsin {\frac {x}{a}}.}

Then,

∫ d x a 2 − x 2 = ∫ a cos ⁡ θ d θ a 2 − a 2 sin 2 ⁡ θ = ∫ a cos ⁡ θ d θ a 2 ( 1 − sin 2 ⁡ θ ) = ∫ a cos ⁡ θ d θ a 2 cos 2 ⁡ θ = ∫ d θ = θ + C = arcsin ⁡ x a + C . {\displaystyle {\begin{aligned}\int {\frac {dx}{\sqrt {a^{2}-x^{2}}}}&=\int {\frac {a\cos \theta \,d\theta }{\sqrt {a^{2}-a^{2}\sin ^{2}\theta }}}\\&=\int {\frac {a\cos \theta \,d\theta }{\sqrt {a^{2}(1-\sin ^{2}\theta )}}}\\&=\int {\frac {a\cos \theta \,d\theta }{\sqrt {a^{2}\cos ^{2}\theta }}}\\&=\int d\theta \\&=\theta +C\\&=\arcsin {\frac {x}{a}}+C.\end{aligned}}}

The above step requires that a > 0 {\displaystyle a>0} and cos ⁡ θ > 0. {\displaystyle \cos \theta >0.} We can choose a {\displaystyle a} to be the principal root of a 2 , {\displaystyle a^{2},} and impose the restriction − π / 2 < θ < π / 2 {\displaystyle -\pi /2<\theta <\pi /2} by using the inverse sine function.

For a definite integral, one must figure out how the bounds of integration change. For example, as x {\displaystyle x} goes from 0 {\displaystyle 0} to a / 2 , {\displaystyle a/2,} then sin ⁡ θ {\displaystyle \sin \theta } goes from 0 {\displaystyle 0} to 1 / 2 , {\displaystyle 1/2,} so θ {\displaystyle \theta } goes from 0 {\displaystyle 0} to π / 6. {\displaystyle \pi /6.} Then,

∫ 0 a / 2 d x a 2 − x 2 = ∫ 0 π / 6 d θ = π 6 . {\displaystyle \int _{0}^{a/2}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}=\int _{0}^{\pi /6}d\theta ={\frac {\pi }{6}}.}

Some care is needed when picking the bounds. Because integration above requires that − π / 2 < θ < π / 2 {\displaystyle -\pi /2<\theta <\pi /2} , θ {\displaystyle \theta } can only go from 0 {\displaystyle 0} to π / 6. {\displaystyle \pi /6.} Neglecting this restriction, one might have picked θ {\displaystyle \theta } to go from π {\displaystyle \pi } to 5 π / 6 , {\displaystyle 5\pi /6,} which would have resulted in the negative of the actual value.

Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives

∫ 0 a / 2 d x a 2 − x 2 = arcsin ⁡ ( x a ) | 0 a / 2 = arcsin ⁡ ( 1 2 ) − arcsin ⁡ ( 0 ) = π 6 {\displaystyle \int _{0}^{a/2}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}=\arcsin \left({\frac {x}{a}}\right){\Biggl |}_{0}^{a/2}=\arcsin \left({\frac {1}{2}}\right)-\arcsin(0)={\frac {\pi }{6}}} as before. Example 2

The integral

∫ a 2 − x 2 d x , {\displaystyle \int {\sqrt {a^{2}-x^{2}}}\,dx,}

may be evaluated by letting x = a sin ⁡ θ , d x = a cos ⁡ θ d θ , θ = arcsin ⁡ x a , {\textstyle x=a\sin \theta ,\,dx=a\cos \theta \,d\theta ,\,\theta =\arcsin {\frac {x}{a}},} where a > 0 {\displaystyle a>0} so that a 2 = a , {\textstyle {\sqrt {a^{2}}}=a,} and − π 2 ≤ θ ≤ π 2 {\textstyle -{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}} by the range of arcsine, so that cos ⁡ θ ≥ 0 {\displaystyle \cos \theta \geq 0} and cos 2 ⁡ θ = cos ⁡ θ . {\textstyle {\sqrt {\cos ^{2}\theta }}=\cos \theta .}

Then,

∫ a 2 − x 2 d x = ∫ a 2 − a 2 sin 2 ⁡ θ ( a cos ⁡ θ ) d θ = ∫ a 2 ( 1 − sin 2 ⁡ θ ) ( a cos ⁡ θ ) d θ = ∫ a 2 ( cos 2 ⁡ θ ) ( a cos ⁡ θ ) d θ = ∫ ( a cos ⁡ θ ) ( a cos ⁡ θ ) d θ = a 2 ∫ cos 2 ⁡ θ d θ = a 2 ∫ ( 1 + cos ⁡ 2 θ 2 ) d θ = a 2 2 ( θ + 1 2 sin ⁡ 2 θ ) + C = a 2 2 ( θ + sin ⁡ θ cos ⁡ θ ) + C = a 2 2 ( arcsin ⁡ x a + x a 1 − x 2 a 2 ) + C = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C . {\displaystyle {\begin{aligned}\int {\sqrt {a^{2}-x^{2}}}\,dx&=\int {\sqrt {a^{2}-a^{2}\sin ^{2}\theta }}\,(a\cos \theta )\,d\theta \\&=\int {\sqrt {a^{2}(1-\sin ^{2}\theta )}}\,(a\cos \theta )\,d\theta \\&=\int {\sqrt {a^{2}(\cos ^{2}\theta )}}\,(a\cos \theta )\,d\theta \\&=\int (a\cos \theta )(a\cos \theta )\,d\theta \\&=a^{2}\int \cos ^{2}\theta \,d\theta \\&=a^{2}\int \left({\frac {1+\cos 2\theta }{2}}\right)\,d\theta \\&={\frac {a^{2}}{2}}\left(\theta +{\frac {1}{2}}\sin 2\theta \right)+C\\&={\frac {a^{2}}{2}}(\theta +\sin \theta \cos \theta )+C\\&={\frac {a^{2}}{2}}\left(\arcsin {\frac {x}{a}}+{\frac {x}{a}}{\sqrt {1-{\frac {x^{2}}{a^{2}}}}}\right)+C\\&={\frac {a^{2}}{2}}\arcsin {\frac {x}{a}}+{\frac {x}{2}}{\sqrt {a^{2}-x^{2}}}+C.\end{aligned}}}

For a definite integral, the bounds change once the substitution is performed and are determined using the equation θ = arcsin ⁡ x a , {\textstyle \theta =\arcsin {\frac {x}{a}},} with values in the range − π 2 ≤ θ ≤ π 2 . {\textstyle -{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}.} Alternatively, apply the boundary terms directly to the formula for the antiderivative.

For example, the definite integral

∫ − 1 1 4 − x 2 d x , {\displaystyle \int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx,}

may be evaluated by substituting x = 2 sin ⁡ θ , d x = 2 cos ⁡ θ d θ , {\displaystyle x=2\sin \theta ,\,dx=2\cos \theta \,d\theta ,} with the bounds determined using θ = arcsin ⁡ x 2 . {\textstyle \theta =\arcsin {\frac {x}{2}}.}

Because arcsin ⁡ ( 1 / 2 ) = π / 6 {\displaystyle \arcsin(1/{2})=\pi /6} and arcsin ⁡ ( − 1 / 2 ) = − π / 6 , {\displaystyle \arcsin(-1/2)=-\pi /6,}

∫ − 1 1 4 − x 2 d x = ∫ − π / 6 π / 6 4 − 4 sin 2 ⁡ θ ( 2 cos ⁡ θ ) d θ = ∫ − π / 6 π / 6 4 ( 1 − sin 2 ⁡ θ ) ( 2 cos ⁡ θ ) d θ = ∫ − π / 6 π / 6 4 ( cos 2 ⁡ θ ) ( 2 cos ⁡ θ ) d θ = ∫ − π / 6 π / 6 ( 2 cos ⁡ θ ) ( 2 cos ⁡ θ ) d θ = 4 ∫ − π / 6 π / 6 cos 2 ⁡ θ d θ = 4 ∫ − π / 6 π / 6 ( 1 + cos ⁡ 2 θ 2 ) d θ = 2 − π / 6 π / 6 = | − π / 6 π / 6 = ( π 3 + sin ⁡ π 3 ) − ( − π 3 + sin ⁡ ( − π 3 ) ) = 2 π 3 + 3 . {\displaystyle {\begin{aligned}\int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx&=\int _{-\pi /6}^{\pi /6}{\sqrt {4-4\sin ^{2}\theta }}\,(2\cos \theta )\,d\theta \\&=\int _{-\pi /6}^{\pi /6}{\sqrt {4(1-\sin ^{2}\theta )}}\,(2\cos \theta )\,d\theta \\&=\int _{-\pi /6}^{\pi /6}{\sqrt {4(\cos ^{2}\theta )}}\,(2\cos \theta )\,d\theta \\&=\int _{-\pi /6}^{\pi /6}(2\cos \theta )(2\cos \theta )\,d\theta \\&=4\int _{-\pi /6}^{\pi /6}\cos ^{2}\theta \,d\theta \\&=4\int _{-\pi /6}^{\pi /6}\left({\frac {1+\cos 2\theta }{2}}\right)\,d\theta \\&=2\left_{-\pi /6}^{\pi /6}={\Biggl |}_{-\pi /6}^{\pi /6}\\&=\left({\frac {\pi }{3}}+\sin {\frac {\pi }{3}}\right)-\left(-{\frac {\pi }{3}}+\sin \left(-{\frac {\pi }{3}}\right)\right)={\frac {2\pi }{3}}+{\sqrt {3}}.\end{aligned}}}

On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields

∫ − 1 1 4 − x 2 d x = − 1 1 = ( 2 arcsin ⁡ 1 2 + 1 2 4 − 1 ) − ( 2 arcsin ⁡ ( − 1 2 ) + − 1 2 4 − 1 ) = ( 2 ⋅ π 6 + 3 2 ) − ( 2 ⋅ ( − π 6 ) − 3 2 ) = 2 π 3 + 3 {\displaystyle {\begin{aligned}\int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx&=\left_{-1}^{1}\\&=\left(2\arcsin {\frac {1}{2}}+{\frac {1}{2}}{\sqrt {4-1}}\right)-\left(2\arcsin \left(-{\frac {1}{2}}\right)+{\frac {-1}{2}}{\sqrt {4-1}}\right)\\&=\left(2\cdot {\frac {\pi }{6}}+{\frac {\sqrt {3}}{2}}\right)-\left(2\cdot \left(-{\frac {\pi }{6}}\right)-{\frac {\sqrt {3}}{2}}\right)\\&={\frac {2\pi }{3}}+{\sqrt {3}}\end{aligned}}} as before.

Case II: Integrands containing a2 + x2

Let x = a tan ⁡ θ , {\displaystyle x=a\tan \theta ,} and use the identity 1 + tan 2 ⁡ θ = sec 2 ⁡ θ . {\displaystyle 1+\tan ^{2}\theta =\sec ^{2}\theta .}

Examples of Case II

Geometric construction for Case II Example 1

In the integral

∫ d x a 2 + x 2 {\displaystyle \int {\frac {dx}{a^{2}+x^{2}}}}

we may write

x = a tan ⁡ θ , d x = a sec 2 ⁡ θ d θ , θ = arctan ⁡ x a , {\displaystyle x=a\tan \theta ,\quad dx=a\sec ^{2}\theta \,d\theta ,\quad \theta =\arctan {\frac {x}{a}},}

so that the integral becomes

∫ d x a 2 + x 2 = ∫ a sec 2 ⁡ θ d θ a 2 + a 2 tan 2 ⁡ θ = ∫ a sec 2 ⁡ θ d θ a 2 ( 1 + tan 2 ⁡ θ ) = ∫ a sec 2 ⁡ θ d θ a 2 sec 2 ⁡ θ = ∫ d θ a = θ a + C = 1 a arctan ⁡ x a + C , {\displaystyle {\begin{aligned}\int {\frac {dx}{a^{2}+x^{2}}}&=\int {\frac {a\sec ^{2}\theta \,d\theta }{a^{2}+a^{2}\tan ^{2}\theta }}\\&=\int {\frac {a\sec ^{2}\theta \,d\theta }{a^{2}(1+\tan ^{2}\theta )}}\\&=\int {\frac {a\sec ^{2}\theta \,d\theta }{a^{2}\sec ^{2}\theta }}\\&=\int {\frac {d\theta }{a}}\\&={\frac {\theta }{a}}+C\\&={\frac {1}{a}}\arctan {\frac {x}{a}}+C,\end{aligned}}}

provided a ≠ 0. {\displaystyle a\neq 0.}

For a definite integral, the bounds change once the substitution is performed and are determined using the equation θ = arctan ⁡ x a , {\displaystyle \theta =\arctan {\frac {x}{a}},} with values in the range − π 2 < θ < π 2 . {\displaystyle -{\frac {\pi }{2}}<\theta <{\frac {\pi }{2}}.} Alternatively, apply the boundary terms directly to the formula for the antiderivative.

For example, the definite integral

∫ 0 1 4 d x 1 + x 2 {\displaystyle \int _{0}^{1}{\frac {4\,dx}{1+x^{2}}}\,}

may be evaluated by substituting x = tan ⁡ θ , d x = sec 2 ⁡ θ d θ , {\displaystyle x=\tan \theta ,\,dx=\sec ^{2}\theta \,d\theta ,} with the bounds determined using θ = arctan ⁡ x . {\displaystyle \theta =\arctan x.}

Since arctan ⁡ 0 = 0 {\displaystyle \arctan 0=0} and arctan ⁡ 1 = π / 4 , {\displaystyle \arctan 1=\pi /4,}

∫ 0 1 4 d x 1 + x 2 = 4 ∫ 0 1 d x 1 + x 2 = 4 ∫ 0 π / 4 sec 2 ⁡ θ d θ 1 + tan 2 ⁡ θ = 4 ∫ 0 π / 4 sec 2 ⁡ θ d θ sec 2 ⁡ θ = 4 ∫ 0 π / 4 d θ = ( 4 θ ) | 0 π / 4 = 4 ( π 4 − 0 ) = π . {\displaystyle {\begin{aligned}\int _{0}^{1}{\frac {4\,dx}{1+x^{2}}}&=4\int _{0}^{1}{\frac {dx}{1+x^{2}}}\\&=4\int _{0}^{\pi /4}{\frac {\sec ^{2}\theta \,d\theta }{1+\tan ^{2}\theta }}\\&=4\int _{0}^{\pi /4}{\frac {\sec ^{2}\theta \,d\theta }{\sec ^{2}\theta }}\\&=4\int _{0}^{\pi /4}d\theta \\&=(4\theta ){\Bigg |}_{0}^{\pi /4}=4\left({\frac {\pi }{4}}-0\right)=\pi .\end{aligned}}}

Meanwhile, direct application of the boundary terms to the formula for the antiderivative yields

∫ 0 1 4 d x 1 + x 2 = 4 ∫ 0 1 d x 1 + x 2 = 4 0 1 = 4 ( arctan ⁡ x ) | 0 1 = 4 ( arctan ⁡ 1 − arctan ⁡ 0 ) = 4 ( π 4 − 0 ) = π , {\displaystyle {\begin{aligned}\int _{0}^{1}{\frac {4\,dx}{1+x^{2}}}\,&=4\int _{0}^{1}{\frac {dx}{1+x^{2}}}\\&=4\left_{0}^{1}\\&=4(\arctan x){\Bigg |}_{0}^{1}\\&=4(\arctan 1-\arctan 0)\\&=4\left({\frac {\pi }{4}}-0\right)=\pi ,\end{aligned}}} same as before. Example 2

The integral

∫ a 2 + x 2 d x {\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,{dx}}

may be evaluated by letting x = a tan ⁡ θ , d x = a sec 2 ⁡ θ d θ , θ = arctan ⁡ x a , {\displaystyle x=a\tan \theta ,\,dx=a\sec ^{2}\theta \,d\theta ,\,\theta =\arctan {\frac {x}{a}},}

where a > 0 {\displaystyle a>0} so that a 2 = a , {\displaystyle {\sqrt {a^{2}}}=a,} and − π 2 < θ < π 2 {\displaystyle -{\frac {\pi }{2}}<\theta <{\frac {\pi }{2}}} by the range of arctangent, so that sec ⁡ θ > 0 {\displaystyle \sec \theta >0} and sec 2 ⁡ θ = sec ⁡ θ . {\displaystyle {\sqrt {\sec ^{2}\theta }}=\sec \theta .}

Then,

∫ a 2 + x 2 d x = ∫ a 2 + a 2 tan 2 ⁡ θ ( a sec 2 ⁡ θ ) d θ = ∫ a 2 ( 1 + tan 2 ⁡ θ ) ( a sec 2 ⁡ θ ) d θ = ∫ a 2 sec 2 ⁡ θ ( a sec 2 ⁡ θ ) d θ = ∫ ( a sec ⁡ θ ) ( a sec 2 ⁡ θ ) d θ = a 2 ∫ sec 3 ⁡ θ d θ . {\displaystyle {\begin{aligned}\int {\sqrt {a^{2}+x^{2}}}\,dx&=\int {\sqrt {a^{2}+a^{2}\tan ^{2}\theta }}\,(a\sec ^{2}\theta )\,d\theta \\&=\int {\sqrt {a^{2}(1+\tan ^{2}\theta )}}\,(a\sec ^{2}\theta )\,d\theta \\&=\int {\sqrt {a^{2}\sec ^{2}\theta }}\,(a\sec ^{2}\theta )\,d\theta \\&=\int (a\sec \theta )(a\sec ^{2}\theta )\,d\theta \\&=a^{2}\int \sec ^{3}\theta \,d\theta .\\\end{aligned}}} The integral of secant cubed may be evaluated using integration by parts. As a result, ∫ a 2 + x 2 d x = a 2 2 ( sec ⁡ θ tan ⁡ θ + ln ⁡ | sec ⁡ θ + tan ⁡ θ | ) + C = a 2 2 ( 1 + x 2 a 2 ⋅ x a + ln ⁡ | 1 + x 2 a 2 + x a | ) + C = 1 2 ( x a 2 + x 2 + a 2 ln ⁡ | x + a 2 + x 2 a | ) + C . {\displaystyle {\begin{aligned}\int {\sqrt {a^{2}+x^{2}}}\,dx&={\frac {a^{2}}{2}}(\sec \theta \tan \theta +\ln |\sec \theta +\tan \theta |)+C\\&={\frac {a^{2}}{2}}\left({\sqrt {1+{\frac {x^{2}}{a^{2}}}}}\cdot {\frac {x}{a}}+\ln \left|{\sqrt {1+{\frac {x^{2}}{a^{2}}}}}+{\frac {x}{a}}\right|\right)+C\\&={\frac {1}{2}}\left(x{\sqrt {a^{2}+x^{2}}}+a^{2}\ln \left|{\frac {x+{\sqrt {a^{2}+x^{2}}}}{a}}\right|\right)+C.\end{aligned}}}

Case III: Integrands containing x2 − a2

Let x = a sec ⁡ θ , {\displaystyle x=a\sec \theta ,} and use the identity sec 2 ⁡ θ − 1 = tan 2 ⁡ θ . {\displaystyle \sec ^{2}\theta -1=\tan ^{2}\theta .}

Examples of Case III

Geometric construction for Case III

Integrals such as

∫ d x x 2 − a 2 {\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}}

can also be evaluated by partial fractions rather than trigonometric substitutions. However, the integral

∫ x 2 − a 2 d x {\displaystyle \int {\sqrt {x^{2}-a^{2}}}\,dx}

cannot. In this case, an appropriate substitution is:

x = a sec ⁡ θ , d x = a sec ⁡ θ tan ⁡ θ d θ , θ = arcsec ⁡ x a , {\displaystyle x=a\sec \theta ,\,dx=a\sec \theta \tan \theta \,d\theta ,\,\theta =\operatorname {arcsec} {\frac {x}{a}},}

where a > 0 {\displaystyle a>0} so that a 2 = a , {\displaystyle {\sqrt {a^{2}}}=a,} and 0 ≤ θ < π 2 {\displaystyle 0\leq \theta <{\frac {\pi }{2}}} by assuming x > 0 , {\displaystyle x>0,} so that tan ⁡ θ ≥ 0 {\displaystyle \tan \theta \geq 0} and tan 2 ⁡ θ = tan ⁡ θ . {\displaystyle {\sqrt {\tan ^{2}\theta }}=\tan \theta .}

Then,

∫ x 2 − a 2 d x = ∫ a 2 sec 2 ⁡ θ − a 2 ⋅ a sec ⁡ θ tan ⁡ θ d θ = ∫ a 2 ( sec 2 ⁡ θ − 1 ) ⋅ a sec ⁡ θ tan ⁡ θ d θ = ∫ a 2 tan 2 ⁡ θ ⋅ a sec ⁡ θ tan ⁡ θ d θ = ∫ a 2 sec ⁡ θ tan 2 ⁡ θ d θ = a 2 ∫ ( sec ⁡ θ ) ( sec 2 ⁡ θ − 1 ) d θ = a 2 ∫ ( sec 3 ⁡ θ − sec ⁡ θ ) d θ . {\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,dx&=\int {\sqrt {a^{2}\sec ^{2}\theta -a^{2}}}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int {\sqrt {a^{2}(\sec ^{2}\theta -1)}}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int {\sqrt {a^{2}\tan ^{2}\theta }}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int a^{2}\sec \theta \tan ^{2}\theta \,d\theta \\&=a^{2}\int (\sec \theta )(\sec ^{2}\theta -1)\,d\theta \\&=a^{2}\int (\sec ^{3}\theta -\sec \theta )\,d\theta .\end{aligned}}}

One may evaluate the integral of the secant function by multiplying the numerator and denominator by ( sec ⁡ θ + tan ⁡ θ ) {\displaystyle (\sec \theta +\tan \theta )} and the integral of secant cubed by parts. As a result,

∫ x 2 − a 2 d x = a 2 2 ( sec ⁡ θ tan ⁡ θ + ln ⁡ | sec ⁡ θ + tan ⁡ θ | ) − a 2 ln ⁡ | sec ⁡ θ + tan ⁡ θ | + C = a 2 2 ( sec ⁡ θ tan ⁡ θ − ln ⁡ | sec ⁡ θ + tan ⁡ θ | ) + C = a 2 2 ( x a ⋅ x 2 a 2 − 1 − ln ⁡ | x a + x 2 a 2 − 1 | ) + C = 1 2 ( x x 2 − a 2 − a 2 ln ⁡ | x + x 2 − a 2 a | ) + C . {\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,dx&={\frac {a^{2}}{2}}(\sec \theta \tan \theta +\ln |\sec \theta +\tan \theta |)-a^{2}\ln |\sec \theta +\tan \theta |+C\\&={\frac {a^{2}}{2}}(\sec \theta \tan \theta -\ln |\sec \theta +\tan \theta |)+C\\&={\frac {a^{2}}{2}}\left({\frac {x}{a}}\cdot {\sqrt {{\frac {x^{2}}{a^{2}}}-1}}-\ln \left|{\frac {x}{a}}+{\sqrt {{\frac {x^{2}}{a^{2}}}-1}}\right|\right)+C\\&={\frac {1}{2}}\left(x{\sqrt {x^{2}-a^{2}}}-a^{2}\ln \left|{\frac {x+{\sqrt {x^{2}-a^{2}}}}{a}}\right|\right)+C.\end{aligned}}}

When π 2 < θ ≤ π , {\displaystyle {\frac {\pi }{2}}<\theta \leq \pi ,} which happens when x < 0 {\displaystyle x<0} given the range of arcsecant, tan ⁡ θ ≤ 0 , {\displaystyle \tan \theta \leq 0,} meaning tan 2 ⁡ θ = − tan ⁡ θ {\displaystyle {\sqrt {\tan ^{2}\theta }}=-\tan \theta } instead in that case.

Substitutions that eliminate trigonometric functions

Substitution can be used to remove trigonometric functions.

For instance,

∫ f ( sin ⁡ ( x ) , cos ⁡ ( x ) ) d x = ∫ 1 ± 1 − u 2 f ( u , ± 1 − u 2 ) d u u = sin ⁡ ( x ) ∫ f ( sin ⁡ ( x ) , cos ⁡ ( x ) ) d x = ∫ 1 ∓ 1 − u 2 f ( ± 1 − u 2 , u ) d u u = cos ⁡ ( x ) ∫ f ( sin ⁡ ( x ) , cos ⁡ ( x ) ) d x = ∫ 2 1 + u 2 f ( 2 u 1 + u 2 , 1 − u 2 1 + u 2 ) d u u = tan ⁡ ( x 2 ) {\displaystyle {\begin{aligned}\int f(\sin(x),\cos(x))\,dx&=\int {\frac {1}{\pm {\sqrt {1-u^{2}}}}}f\left(u,\pm {\sqrt {1-u^{2}}}\right)\,du&&u=\sin(x)\\\int f(\sin(x),\cos(x))\,dx&=\int {\frac {1}{\mp {\sqrt {1-u^{2}}}}}f\left(\pm {\sqrt {1-u^{2}}},u\right)\,du&&u=\cos(x)\\\int f(\sin(x),\cos(x))\,dx&=\int {\frac {2}{1+u^{2}}}f\left({\frac {2u}{1+u^{2}}},{\frac {1-u^{2}}{1+u^{2}}}\right)\,du&&u=\tan \left({\tfrac {x}{2}}\right)\\\end{aligned}}}

The last substitution is known as the Weierstrass substitution, which makes use of tangent half-angle formulas.

For example,

∫ 4 cos ⁡ x ( 1 + cos ⁡ x ) 3 d x = ∫ 2 1 + u 2 4 ( 1 − u 2 1 + u 2 ) ( 1 + 1 − u 2 1 + u 2 ) 3 d u = ∫ ( 1 − u 2 ) ( 1 + u 2 ) d u = ∫ ( 1 − u 4 ) d u = u − u 5 5 + C = tan ⁡ x 2 − 1 5 tan 5 ⁡ x 2 + C . {\displaystyle {\begin{aligned}\int {\frac {4\cos x}{(1+\cos x)^{3}}}\,dx&=\int {\frac {2}{1+u^{2}}}{\frac {4\left({\frac {1-u^{2}}{1+u^{2}}}\right)}{\left(1+{\frac {1-u^{2}}{1+u^{2}}}\right)^{3}}}\,du=\int (1-u^{2})(1+u^{2})\,du\\&=\int (1-u^{4})\,du=u-{\frac {u^{5}}{5}}+C=\tan {\frac {x}{2}}-{\frac {1}{5}}\tan ^{5}{\frac {x}{2}}+C.\end{aligned}}}

Hyperbolic substitution

Substitutions of hyperbolic functions can also be used to simplify integrals.

In the integral ∫ d x a 2 + x 2 , {\displaystyle \int {\frac {dx}{\sqrt {a^{2}+x^{2}}}}\,,} make the substitution x = a sinh ⁡ u , {\displaystyle x=a\sinh {u},} d x = a cosh ⁡ u d u . {\displaystyle dx=a\cosh u\,du.}

Then, using the identities cosh 2 ⁡ ( x ) − sinh 2 ⁡ ( x ) = 1 {\displaystyle \cosh ^{2}(x)-\sinh ^{2}(x)=1} and sinh − 1 ⁡ x = ln ⁡ ( x + x 2 + 1 ) , {\displaystyle \sinh ^{-1}{x}=\ln(x+{\sqrt {x^{2}+1}}),}

∫ d x a 2 + x 2 = ∫ a cosh ⁡ u d u a 2 + a 2 sinh 2 ⁡ u   , = ∫ a cosh ⁡ u d u a 1 + sinh 2 ⁡ u = ∫ a cosh ⁡ u a cosh ⁡ u d u = u + C = sinh − 1 ⁡ x a + C = ln ⁡ ( x 2 a 2 + 1 + x a ) + C = ln ⁡ ( x 2 + a 2 + x a ) + C {\displaystyle {\begin{aligned}\int {\frac {dx}{\sqrt {a^{2}+x^{2}}}}\,&=\int {\frac {a\cosh u\,du}{\sqrt {a^{2}+a^{2}\sinh ^{2}u}}}\ ,\\&=\int {\frac {a\cosh {u}\,du}{a{\sqrt {1+\sinh ^{2}{u}}}}}\,\\&=\int {\frac {a\cosh {u}}{a\cosh u}}\,du\\&=u+C\\&=\sinh ^{-1}{\frac {x}{a}}+C\\&=\ln \left({\sqrt {{\frac {x^{2}}{a^{2}}}+1}}+{\frac {x}{a}}\right)+C\\&=\ln \left({\frac {{\sqrt {x^{2}+a^{2}}}+x}{a}}\right)+C\end{aligned}}}

See also

Wikiversity has learning resources about Trigonometric Substitutions Wikibooks has a book on the topic of: Calculus/Integration techniques/Trigonometric Substitution

References

  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. ^ Thomas, George B.; Weir, Maurice D.; Hass, Joel (2010). Thomas' Calculus: Early Transcendentals (12th ed.). Addison-Wesley. ISBN 978-0-321-58876-0.
  3. ^ Stewart, James (2012). "Section 7.2: Trigonometric Integrals". Calculus - Early Transcendentals. United States: Cengage Learning. pp. 475–6. ISBN 978-0-538-49790-9.
  4. ^ Boyadzhiev, Khristo N. "Hyperbolic Substitutions for Integrals" (PDF). Archived from the original (PDF) on 26 February 2020. Retrieved 4 March 2013.