In the world of TOI-270, there has always been great interest and endless curiosity. Since time immemorial, TOI-270 has aroused the attention of humanity, whether due to its mystery, its relevance, its impact or its transcendence. Regardless of the time, place or culture, TOI-270 has played a fundamental role in people's lives, influencing customs, beliefs, decisions and actions. In this article, we will deeply explore the fascinating world of TOI-270, analyzing its importance, its implications and its influence on society. Through a deep analysis, we will discover the many facets of TOI-270, unraveling enigmas, demystifying concepts and sharing new perspectives that will help us better understand this exciting topic.
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Pictor[1] |
Right ascension | 04h 33m 39.72001s[2] |
Declination | −51° 57′ 22.4354″[2] |
Apparent magnitude (V) | 12.617[3] |
Characteristics | |
Evolutionary stage | Main sequence |
Spectral type | M3.0V[4] |
Apparent magnitude (V) | 12.617±0.03[3] |
Apparent magnitude (R) | 12.147±0.05[3] |
Apparent magnitude (G) | 11.621±0.003[2] |
Apparent magnitude (J) | 9.099±0.032[3] |
Apparent magnitude (H) | 8.531±0.073[3] |
Apparent magnitude (K) | 8.251±0.029[3] |
Astrometry | |
Radial velocity (Rv) | 25.90±0.37[2] km/s |
Proper motion (μ) | RA: +83.082 mas/yr[2] Dec.: −269.803 mas/yr[2] |
Parallax (π) | 44.4899±0.0147 mas[2] |
Distance | 73.31 ± 0.02 ly (22.477 ± 0.007 pc) |
Details[5] | |
Mass | 0.386±0.008 M☉ |
Radius | 0.378±0.011 R☉ |
Luminosity (bolometric) | 0.0194±0.0019 L☉ |
Surface gravity (log g) | 4.872±0.026 cgs |
Temperature | 3506±70 K |
Metallicity | −0.20±0.12 dex |
Other designations | |
L 231-32, PM J04336-5157, TOI-270, TIC 259377017, 2MASS J04333970-5157222[3] | |
Database references | |
SIMBAD | data |
Exoplanet Archive | data |
TOI-270, also known as L 231-32, is a red dwarf star 73.3 light-years (22.5 parsecs) away in the constellation Pictor. It has about 39% the mass and 38% the radius of the Sun, and a temperature of about 3,506 K (3,233 °C; 5,851 °F). TOI-270 hosts a system of three known exoplanets.
The three planets of TOI-270 were discovered in 2019 by the transit method with TESS.[4] Their masses have since been measured by both Doppler spectroscopy[5] and transit-timing variations.[6] The innermost planet, TOI-270 b, is a rocky super-Earth, while the two outer planets are mini-Neptunes.[5] TOI-270 b & c orbit near a 5:3 resonance, while TOI-270 c & d orbit near a 2:1 resonance.[4]
Observations of the outermost planet, TOI-270 d, by the Hubble Space Telescope suggest a hydrogen-rich atmosphere with signs of water vapor.[7] TOI-270 c & d are good targets for atmospheric detection with the James Webb Space Telescope.[8]
The James Webb Space Telescope detected methane (CH4), carbon dioxide (CO2) and water vapor in the atmosphere of TOI-270 d.[9] The atmosphere of this planet was also found to be metal-rich, with a mean molecular weight of 5.47+1.25
−1.14 and an atmospheric metal mass fraction (percentage of the mass of metals in the atmosphere) of 58%+8%
−12%.[9] Possible signatures of sulfur dioxide (SO2) and carbon disulfide (CS2) were also found.[9]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 1.48±0.18 M🜨 | 0.03197(22) | 3.3601538(48) | 0.0167(84) | 89.39±0.37° | 1.206±0.039 R🜨 |
c | 6.20±0.31 M🜨 | 0.04526(31) | 5.6605731(31) | 0.0044(6) | 89.36±0.24° | 2.355±0.064 R🜨 |
d | 4.20±0.16 M🜨 | 0.07210(50) | 11.379573(13) | 0.0066(20) | 89.73±0.16° | 2.133±0.058 R🜨 |