In this article, we will explore the fascinating world of Self-complementary graph, where we will take a look at its origins, evolution and significance in today's society. Self-complementary graph has occupied a prominent place in human history, playing a fundamental role in various areas, from culture and science, to politics and economics. Over the years, Self-complementary graph has been the subject of study, debate and controversy, sparking the interest of academics, experts and hobbyists alike. Through a detailed and exhaustive analysis, we will delve into the multiple facets of Self-complementary graph, discovering its influence and relevance in the contemporary world.
In the mathematical field of graph theory, a self-complementary graph is a graph which is isomorphic to its complement. The simplest non-trivial self-complementary graphs are the 4-vertex path graph and the 5-vertex cycle graph. There is no known characterization of self-complementary graphs.
Every Paley graph is self-complementary.[1] For example, the 3 × 3 rook's graph (the Paley graph of order nine) is self-complementary, by a symmetry that keeps the center vertex in place but exchanges the roles of the four side midpoints and four corners of the grid.[2] All strongly regular self-complementary graphs with fewer than 37 vertices are Paley graphs; however, there are strongly regular graphs on 37, 41, and 49 vertices that are not Paley graphs.[3]
The Rado graph is an infinite self-complementary graph.[4]
An n-vertex self-complementary graph has exactly half as many edges of the complete graph, i.e., n(n − 1)/4 edges, and (if there is more than one vertex) it must have diameter either 2 or 3.[1] Since n(n − 1) must be divisible by 4, n must be congruent to 0 or 1 modulo 4; for instance, a 6-vertex graph cannot be self-complementary.
The problems of checking whether two self-complementary graphs are isomorphic and of checking whether a given graph is self-complementary are polynomial-time equivalent to the general graph isomorphism problem.[5]