Polyene

In today's world, Polyene is a topic that has become increasingly relevant. Over the years, Polyene has generated great interest in society, sparking debates, research and different positions around this issue. It is evident that Polyene has impacted our lives in some way, whether on a social, cultural, economic or personal level. For this reason, it is important to thoroughly analyze and understand the implications and consequences that Polyene brings with it, as well as to be aware of the trends and advances that are developing in relation to this topic. In this article we will explore various perspectives and approaches on Polyene, with the aim of providing a complete and enriching overview that allows the reader to delve deeper into this topic.

In organic chemistry, polyenes are poly-unsaturated, organic compounds that contain at least three alternating double (C=C) and single (C−C) carbon–carbon bonds. These carbon–carbon double bonds interact in a process known as conjugation, resulting in some unusual optical properties. Related to polyenes are dienes, where there are only two alternating double and single bonds.

The following polyenes are used as antimycotics for humans: amphotericin B, nystatin, candicidin, pimaricin, methyl partricin, and trichomycin.[1]

Optical properties

Some polyenes are brightly colored, an otherwise rare property for a hydrocarbon. Normally alkenes absorb in the ultraviolet region of a spectrum, but the absorption energy state of polyenes with numerous conjugated double bonds can be lowered such that they enter the visible region of the spectrum, resulting in compounds which are coloured (because they contain a chromophore). Thus many natural dyes contain linear polyenes.

Chemical and electrical properties

Polyenes tend to be more reactive than simpler alkenes. For example, polyene-containing triglycerides are reactive towards atmospheric oxygen. Polyacetylene, which partially oxidized or reduced, exhibits high electrical conductivity. Most conductive polymers are polyenes, and many have conjugated structures. Poly(aza)acetylenes are readily prepared from pyridine precursors without the necessity of a controlled atmosphere, simply by ultraviolet irradiation of a mixture of pyridine and poly(4-vinyl) pyridine.[citation needed] Recent research at the Weizmann Institute and Aix-Marseille University showed a clear transition between ionic and electronic conductivity with increasing UV dose over 30 hours.[2]

Occurrence

A few fatty acids are polyenes. Another class of important polyenes are polyene antimycotics,[3]

References

  1. ^ Zotchev, Sergey B. (2003). "Polyene macrolide antibiotics and their applications in human therapy". Current Medicinal Chemistry. 10 (3): 211–223. doi:10.2174/0929867033368448. PMID 12570708.
  2. ^ Vaganova, Evgenia; Eliaz, Dror; Shimanovich, Ulyana; Leitus, Gregory; Aqad, Emad; Lokshin, Vladimir; Khodorkovsky, Vladimir (January 2021). "Light-Induced Reactions within Poly(4-vinyl pyridine)/Pyridine Gels: The 1,6-Polyazaacetylene Oligomers Formation". Molecules. 26 (22): 6925. doi:10.3390/molecules26226925. ISSN 1420-3049. PMC 8621047. PMID 34834017.
  3. ^ NCBI Bookshelf (1996). "Polyene Antifungal Drugs". The University of Texas Medical Branch at Galveston. Retrieved 29 January 2010.
  4. ^ Torrado, J. J.; Espada, R.; Ballesteros, M. P.; Torrado-Santiago, S. "Amphotericin B formulations and drug targeting", Journal of Pharmaceutical Sciences, 2008, volume 97, pp. 2405–2425. doi:10.1002/jps.21179.
  5. ^ Lam, Jacky W. Y.; Tang, Ben Zhong. "Functional Polyacetylenes", Accounts of Chemical Research, 2005, volume 38, pp. 745–754. doi:10.1021/ar040012f.