PDF/A is a topic that has captured the attention of millions of people around the world. With a long history and significant impact on society, PDF/A has been the subject of debate, study and research for decades. In this article, we will explore in detail the most relevant aspects related to PDF/A, analyzing its importance, influence and possible implications for the future. From its origin to its current evolution, PDF/A is a topic that continues to generate interest and curiosity, and it is crucial to understand its scope to better understand the world around us.
Filename extension |
.pdf |
---|---|
Internet media type |
application/pdf |
Type code | 'PDF ' (including a single trailing space) |
Uniform Type Identifier (UTI) | com.adobe.pdf |
Magic number | %PDF |
Developed by | ISO |
Initial release | October 1, 2005 |
Extended from | |
Standard | ISO 19005 |
PDF/A is an ISO-standardized version of the Portable Document Format (PDF) specialized for use in the archiving and long-term preservation of electronic documents. PDF/A differs from PDF by prohibiting features unsuitable for long-term archiving, such as font linking (as opposed to font embedding) and encryption.[1] The ISO requirements for PDF/A file viewers include color management guidelines, support for embedded fonts, and a user interface for reading embedded annotations.
Abbr. | Subtitle | Published | Standard | Based on | Ref. |
---|---|---|---|---|---|
PDF/A-1 | Part 1: Use of PDF 1.4 | 2005-09-28 | ISO 19005-1 | PDF 1.4 (Adobe Systems, PDF Reference, third edition) | [2] |
PDF/A-2 | Part 2: Use of ISO 32000-1 | 2011-06-20 | ISO 19005-2 | PDF 1.7 (ISO 32000-1:2008) | [3] |
PDF/A-3 | Part 3: Use of ISO 32000-1 with support for embedded files | 2012-10-15 | ISO 19005-3 | PDF 1.7 (ISO 32000-1:2008) | [4] |
PDF/A-4 | Part 4: Use of ISO 32000-2 | 2020-11 | ISO 19005-4 | PDF 2.0 (ISO 32000-2:2020) | [5] |
PDF is a standard for encoding documents in an "as printed" form that is portable between systems. However, the suitability of a PDF file for archival preservation depends on options chosen when the PDF is created: most notably, whether to embed the necessary fonts for rendering the document; whether to use encryption; and whether to preserve additional information from the original document beyond what is needed to print it.
PDF/A was originally a new joint activity between the Association for Suppliers of Printing, Publishing and Converting Technologies (NPES) and the Association for Information and Image Management AIIM in conjunction with Adobe to develop an international standard defining the use of the Portable Document Format (PDF) for archiving documents.[6] The goal was to address the growing need to electronically archive documents in a way that would ensure preservation of their contents over an extended period of time and ensure that those documents would be able to be retrieved and rendered with a consistent and predictable result in the future.[7] This need exists in a wide variety of government, industry and academic areas worldwide, including legal systems, libraries, newspapers, and regulated industries.[8]
The PDF/A standard does not define an archiving strategy or the goals of an archiving system. It identifies a "profile" for electronic documents that ensures the documents can be reproduced exactly the same way using various software in years to come. A key element to this reproducibility is the requirement for PDF/A documents to be 100% self-contained. All of the information necessary for displaying the document in the same manner is embedded in the file. This includes, but is not limited to, all content (text, raster images and vector graphics), fonts, and color information. A PDF/A document is not permitted to be reliant on information from external sources (e.g., font programs and data streams), but may include annotations (e.g., hypertext links) that link to external documents.[9]
Other key elements to PDF/A conformance include:[10][11][12]
Part 1 of the standard was first published on September 28, 2005,[2] and specifies two levels of conformance for PDF files:[13]
Level B conformance requires only that standards necessary for the reliable reproduction of a document's visual appearance be followed, while Level A conformance includes all Level B requirements in addition to features intended to improve a document's digital accessibility.
Additional Level A requirements:
Level A conformance was intended to increase the accessibility of conforming files for physically impaired users by allowing assistive software, such as screen readers, to more precisely extract and interpret a file's contents.[13] A later standard, PDF/UA, was developed to eliminate what became considered some of PDF/A's shortcomings, replacing many of its general guidelines with more detailed technical specifications.[14]
Part 2 of the standard, published on June 20, 2011,[3] addresses some of the new features added with versions 1.5, 1.6 and 1.7 of the PDF Reference. PDF/A-1 files will not necessarily conform to PDF/A-2, and PDF/A-2 compliant files will not necessarily conform to PDF/A-1.
Part 2 of the PDF/A Standard is based on a PDF 1.7 (ISO 32000-1), rather than PDF 1.4 and offers several new features:
Part 2 defines three conformance levels. PDF/A-2a and PDF/A-2b correspond to conformance levels a and b in PDF/A-1. A new conformance level, PDF/A-2u, represents Level B conformance (PDF/A-2b) with the additional requirement that all text in the document have Unicode mapping.[13][15]
Part 3 of the standard, published on October 15, 2012,[4] differs from PDF/A-2 in only one regard: it allows embedding of arbitrary file formats (such as XML, CSV, CAD, word-processing documents, spreadsheet documents, and others) into PDF/A conforming documents.[16]
Part 4 of the standard, based on PDF 2.0, was published in late 2020.[17]
PDF/A supports 2 additional conformance levels:
PDF/A-4e supersedes PDF/E as the archival format for engineering-based documents using PDF 2.0.
Archives sometimes request from their users to submit PDF/A Files. They thus provide their users with information how to convert their files to PDF/A. There are several methods using standard software that differ in computation time as well as preservation of links, equations, vectorgraphs and special characters.[18]
When documents are converted to PDF/A visual inspection is needed since errors in the visual content are common. In a test sample 11 percent of the produced PDF/A-1b document contained visual artefacts. These reproducibility errors included vector graphics issues (transparent objects), loss of links, loss of other document content (unreadable characters, missing text, document part missing), updated fields (reflecting time or folder of conversion) and spelling errors.[19] Archives thus usually do not convert to PDF/A themselves. Instead, some archives ask their users to provide a PDF/A document. Typical computer setups provide several methods for the conversion of documents to PDF/A with different pros and cons.[18]
Converting a simple PDF (up to version 1.4) into a PDF/A-2 usually works as expected, except for problems with glyphs. According to the PDF Association, "Problems can occur before and/or during the generation of PDFs. A PDF/A file can be formally correct yet still have incorrect glyphs. Only a careful visual check can uncover this problem. Because generation problems also affect Unicode mapping, the problem attracts the attention when a visual check is carried out on the extracted text. In PDF/A, text/font usage is specified uniquely enough to ensure that it cannot be incorrect. If viewers or printers do not offer complete support for encoding systems, this can result in problems with regard to PDF/A."[20] Meaning that for a document to be completely compliant with the standard, it will be correct internally, while the system used for viewing or printing the document may produce undesired results.
A document produced with optical character recognition (OCR) conversion into PDF/A-2 or PDF/A-3 doesn't support the notdefglyph
flag. Therefore, this type of conversion can result in unrendered content.
PDF/A standard documents can be created with the following software: SoftMaker Office 2021, MS Word 2010 and newer, Adobe Acrobat Distiller, PDF Creator, OpenOffice or LibreOffice since release 3.0, LaTeX with pdfx or pdfTeX addons, or by using a virtual PDF printer (Adobe Acrobat Pro, PDF24, FreePDF + Ghostscript).[21]
A PDF/A document can be identified as such through PDF/A-specific metadata located in the "http://www.aiim.org/pdfa/ns/id/" namespace. This metadata represents a claim of conformance; in itself it does not ensure conformance:
Validation of PDF/A documents is attempted to reveal whether a produced file really is a PDF/A file or not. Unfortunately, PDF/A validators quite often disagree, since the interpretation of the PDF/A standards is not always clear.[19]
Industry collaboration in the original PDF/A Competence Center led to the development of the Isartor Test Suite in 2007 and 2008. The test suite consists of 204 PDF files intentionally constructed to systematically fail each of the requirements for PDF/A-1b conformance, allowing developers to test the ability of their software to validate against the standard's most basic level of conformance.[23][24] By mid-2009 the test suite had already made an appreciable difference in the general quality of PDF/A validation software.[25]
The veraPDF consortium, led by the Open Preservation Foundation[26] and the PDF Association, was created in response to the EU Commission's PREFORMA challenge[27] to develop an open-source validator for the PDF/A format. The PDF Association launched the PDF Validation Technical Working Group in November 2014 to articulate a plan for developing an industry-supported PDF/A validator.[28][failed verification]
The veraPDF consortium subsequently won phase 2 of the PREFORMA contract in April 2015.[29] Development continued throughout 2016,[30] with Phase 2 completed on-schedule by December 2016. The Phase 3 testing and acceptance period concluded in July, 2017. veraPDF now covers all parts (1, 2 and 3) and conformance levels (a, b, u) of PDF/A.
veraPDF is available for installation on Windows, macOS, or Linux using a PDFBox-based or "Greenfields" PDF parser.[31]
The PDF/A specification also states some requirements for a conforming PDF/A viewer, which must
When encountering a file that claims conformance with PDF/A, some PDF viewers will default to a special "PDF/A viewing mode" to fulfill conforming reader requirements. To take one example, Adobe Acrobat and Adobe Reader 9 include an alert to advise the user that PDF/A viewing mode has been activated. Some PDF viewers allow users to disable the PDF/A viewing mode or to remove the PDF/A information from a file.[32][33]
A PDF/A document must embed all fonts in use; accordingly, a PDF/A file will often be larger than an equivalent PDF file that does not include embedded fonts.
The use of transparency is forbidden in PDF/A-1. The majority of PDF generation tools that allow for PDF/A document compliance, such as the PDF export in OpenOffice.org or PDF export tool in Microsoft Office 2007 suites, will also make any transparent images in a given document non-transparent. That restriction was removed in PDF/A-2.[10]
Some archivists have voiced concerns that PDF/A-3, which allows arbitrary files to be embedded in PDF/A documents, could result in circumvention of memory institution procedures and restrictions on archived formats.[34]
The PDF Association had addressed various misconceptions[35] regarding PDF/A in its publication "PDF/A in a Nutshell 2.0".[36]