In today's world, OGLE-TR-122 has become a topic of great relevance and interest to a wide spectrum of people. Whether it's its impact on society, its historical relevance, or its influence on popular culture, OGLE-TR-122 has captured the attention and imagination of people of all ages and backgrounds. Knowing more about OGLE-TR-122 is crucial to understanding the world around us and the forces that shape it. In this article, we will explore different aspects of OGLE-TR-122, from its origin to its influence today, providing a complete and detailed overview that allows the reader to better understand this fascinating topic.
Observation data Epoch J2000.0 Equinox J2000.0 (ICRS) | |
---|---|
Constellation | Carina |
Right ascension | 11h 06m 51.99s[1] |
Declination | −60° 51′ 45.7″[1] |
Characteristics | |
Spectral type | ? (primary)/M (b)[2] |
Apparent magnitude (I) | 15.61 (system)[1] |
Variable type | Eclipsing binary |
Orbit[2] | |
Period (P) | 7.26867 d |
Eccentricity (e) | 0.205 ± 0.008 |
Inclination (i) | 88–90° |
Periastron epoch (T) | JD 2452342.41 ± 0.02 |
Argument of periastron (ω) (secondary) | 99.2 ± 0.8° |
Semi-amplitude (K1) (primary) | 9.642 ± 0.088 km/s |
Details[2] | |
OGLE-TR-122A | |
Mass | 0.98 ± 0.14 M☉ |
Radius | 1.05+0.20 −0.09 R☉ |
Surface gravity (log g) | 3.9 ± 0.5 cgs |
Temperature | 5700 ± 300 K |
Metallicity | 0.15 ± 0.36 dex |
Rotational velocity (v sin i) | 5.7 ± 0.6 km/s |
OGLE-TR-122B | |
Mass | 0.092 ± 0.009 M☉ |
Radius | 0.120+0.024 −0.013 R☉ |
Other designations | |
V817 Car | |
Database references | |
SIMBAD | data |
OGLE-TR-122 is a binary stellar system containing one of the smallest main-sequence stars whose radius has been measured. It was discovered when the Optical Gravitational Lensing Experiment (OGLE) survey observed the smaller star eclipsing the larger primary. The orbital period is approximately 7.3 days. The system's primary is thought to resemble the Sun.[2]
The smaller star, OGLE-TR-122B, is estimated to have a radius around 0.12 solar radii, or around 20% larger than Jupiter's, and a mass of around 0.1 solar masses, or approximately 100 times Jupiter's. This makes its average density approximately 50 times the Sun's[2][3] or over 80 times the density of water. OGLE-TR-122b's mass is close to the lowest possible mass for a hydrogen-fusing star, estimated to be around 0.07 or 0.08 solar masses.[4] The observed transit provides the first direct evidence for a star with a radius comparable to Jupiter's.[2]
{{cite journal}}
: CS1 maint: date and year (link)