Nowadays, Matrix determinant lemma is a topic that attracts the attention of many people around the world. From its origins to its impact on today's society, Matrix determinant lemma has been the subject of numerous debates and has aroused great interest in different fields. Whether due to its historical relevance, its influence on popular culture or its importance in science and technology, Matrix determinant lemma is a phenomenon that continues to intrigue experts and fans alike. In this article, we will explore different aspects of Matrix determinant lemma and analyze its impact in different areas, in order to better understand its meaning and its reach in contemporary society.
In mathematics, in particular linear algebra, the matrix determinant lemma computes the determinant of the sum of an invertible matrix A and the dyadic product, u vT, of a column vector u and a row vector vT.[1][2]
Suppose A is an invertible square matrix and u, v are column vectors. Then the matrix determinant lemma states that
Here, uvT is the outer product of two vectors u and v.
The theorem can also be stated in terms of the adjugate matrix of A:
in which case it applies whether or not the matrix A is invertible.
First the proof of the special case A = I follows from the equality:[3]
The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + vTu). So we have the result:
Then the general case can be found as:
If the determinant and inverse of A are already known, the formula provides a numerically cheap way to compute the determinant of A corrected by the matrix uvT. The computation is relatively cheap because the determinant of A + uvT does not have to be computed from scratch (which in general is expensive). Using unit vectors for u and/or v, individual columns, rows or elements[4] of A may be manipulated and a correspondingly updated determinant computed relatively cheaply in this way.
When the matrix determinant lemma is used in conjunction with the Sherman–Morrison formula, both the inverse and determinant may be conveniently updated together.
Suppose A is an invertible n-by-n matrix and U, V are n-by-m matrices. Then
In the special case this is the Weinstein–Aronszajn identity.
Given additionally an invertible m-by-m matrix W, the relationship can also be expressed as