In this article, we want to explore and analyze the impact that L-selectride has had on different aspects of society. Since its emergence, L-selectride has aroused great interest and controversy, generating debates in various areas. In this sense, it is relevant to examine the different points of view that exist around L-selectride, as well as its influence in fields as diverse as politics, culture, technology and economics. Likewise, we propose to examine how L-selectride has managed to position itself as a phenomenon that has marked a before and after, creating trends and innovations that have transformed the way we perceive and approach the world around us.
![]() | |
Names | |
---|---|
IUPAC name
lithium tri-sec-butyl(hydrido)borate(1-)
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.049.166 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C12H28BLi | |
Molar mass | 190.10 g/mol |
Appearance | Colorless liquid |
Density | 0.870 g/ml |
Reacts with water | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards
|
Water reactive, flammable, burns skin and eyes |
Flash point | -17 °F |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
|
L-selectride is a organoboron compound with the chemical formula Li[(CH3CH2CH(CH3))3BH]. A colorless salt, it is usually dispensed as a solution in THF. As a particularly basic and bulky borohydride, it is used for stereoselective reduction of ketones.[1]
Like other borohydrides, reductions are effected in two steps: delivery of the hydride equivalent to give the lithium alkoxide followed by hydrolytic workup:
The selectivity of this reagent is illustrated by its reduction of all three methylcyclohexanones to the less stable methylcyclohexanols in >98% yield.
Under certain conditions, L-selectride can selectively reduce enones by conjugate addition of hydride, owing to the greater steric hindrance the bulky hydride reagent experiences at the carbonyl carbon relative to the (also-electrophilic) β-position.[2] L-Selectride can also stereoselectively reduce carbonyl groups in a 1,2-fashion, again due to the steric nature of the hydride reagent.[3]
It reduces ketones to alcohols.[4]
N-selectride and K-selectride are related compounds, but instead of lithium as cation they have sodium and potassium cations respectively. These reagents can sometimes be used as alternatives to, for instance, sodium amalgam reductions in inorganic chemistry.[5]