In today's world, Hexanitrohexaazaisowurtzitane has become a topic of great relevance and debate. Its impact extends to various areas, generating conflicting opinions and awakening the interest of experts and the general public. That is why it is essential to delve into its implications, origin and consequences, in order to thoroughly understand its influence in different areas. In this article, different perspectives on Hexanitrohexaazaisowurtzitane will be explored, analyzing its evolution over time and its relevance today. From its origins to its impact on modern society, key aspects will be addressed that will allow the reader to have a broad and detailed vision of this fascinating topic.
| |||
Names | |||
---|---|---|---|
IUPAC name
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclododecane
| |||
Other names
| |||
Identifiers | |||
3D model (JSmol)
|
|||
Abbreviations | CL-20, HNIW | ||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.114.169 | ||
PubChem CID
|
|||
UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C 6N 12H 6O 12 | |||
Molar mass | 438.1850 g mol−1 | ||
Density | 2.044 g cm−3 | ||
Explosive data | |||
Detonation velocity | 9,500 m/s | ||
RE factor | 1.9 | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
|
Hexanitrohexaazaisowurtzitane, also called HNIW and CL-20, is a polycyclic nitroamine explosive with the formula C6H6N12O12. It has a better oxidizer-to-fuel ratio than conventional HMX or RDX. It releases 20% more energy than traditional HMX-based propellants.
In the 1980s, CL-20 was developed by the China Lake facility, primarily to be used in propellants.[1]
While most development of CL-20 has been fielded by the Thiokol Corporation, the US Navy (through ONR) has also been interested in CL-20 for use in rocket propellants, such as for missiles, as it has lower observability characteristics such as less visible smoke.[2]
Thus far, CL-20 has only been used in the AeroVironment Switchblade 300 “kamikaze” drone, but is undergoing testing for use in the Lockheed Martin AGM-158C Long Range Anti-Ship Missile (LRASM) and AGM-158B Joint Air-to-Surface Standoff Missile-Extended Range (JASSM-ER).[3]
The Indian Armed Forces have also looked into CL-20.[4]
The Taiwanese National Chung-Shan Institute of Science and Technology innaugerated a CL-20 production facility in 2022 with reported integration into the HF-2 and HF-3 product lines.[5]
First, benzylamine (1) is condensed with glyoxal (2) under acidic and dehydrating conditions to yield the first intermediate compound.(3). Four benzyl groups selectively undergo hydrogenolysis using palladium on carbon and hydrogen. The amino groups are then acetylated during the same step using acetic anhydride as the solvent. (4). Finally, compound 4 is reacted with nitronium tetrafluoroborate and nitrosonium tetrafluoroborate, resulting in HNIW.[6]
In August 2011, Adam Matzger and Onas Bolton published results showing that a cocrystal of CL-20 and TNT had twice the stability of CL-20—safe enough to transport, but when heated to 136 °C (277 °F) the cocrystal may separate into liquid TNT and a crystal form of CL-20 with structural defects that is somewhat less stable than CL-20.[7][8]
In August 2012, Onas Bolton et al. published results showing that a cocrystal of 2 parts CL-20 and 1 part HMX had similar safety properties to HMX, but with a greater firing power closer to CL-20.[9][10]
In 2017, K.P. Katin and M.M. Maslov designed one-dimensional covalent chains based on the CL-20 molecules.[11] Such chains were constructed using CH
2 molecular bridges for the covalent bonding between the isolated CL-20 fragments. It was theoretically predicted that their stability increased with efficient length growth. A year later, M.A. Gimaldinova and colleagues demonstrated the versatility of CH
2 molecular bridges.[12] It is shown that the use of CH
2 bridges is the universal technique to connect both CL-20 fragments in the chain and the chains together to make a network (linear or zigzag). It is confirmed that the increase of the effective sizes and dimensionality of the CL-20 covalent systems leads to their thermodynamic stability growth. Therefore, the formation of CL-20 crystalline covalent solids seems to be energetically favorable, and CL-20 molecules are capable of forming not only molecular crystals but bulk covalent structures as well. Numerical calculations of CL-20 chains and networks' electronic characteristics revealed that they were wide-bandgap semiconductors.[11][12]