In this article, we will explore the impact of Duffin–Kemmer–Petiau algebra on modern society. From its emergence to its evolution in recent years, Duffin–Kemmer–Petiau algebra has played a fundamental role in different aspects of daily life. Through detailed analysis, we will examine how Duffin–Kemmer–Petiau algebra has influenced the way people relate, work, and play. Additionally, we will examine the possible future implications of Duffin–Kemmer–Petiau algebra and how this could further shape our society in the years to come.
Algebra generated by the Duffin-Kemmer-Petiau matrices
In mathematical physics, the Duffin–Kemmer–Petiau (DKP) algebra, introduced by R.J. Duffin, Nicholas Kemmer and G. Petiau, is the algebra which is generated by the Duffin–Kemmer–Petiau matrices. These matrices form part of the Duffin–Kemmer–Petiau equation that provides a relativistic description of spin-0 and spin-1 particles.
The DKP algebra is also referred to as the meson algebra.[1]
Defining relations
The Duffin–Kemmer–Petiau matrices have the defining relation[2]
where stand for a constant diagonal matrix. The Duffin–Kemmer–Petiau matrices for which consists in diagonal elements (+1,-1,...,-1) form part of the Duffin–Kemmer–Petiau equation. Five-dimensional DKP matrices can be represented as:[3][4]
, , ,
These five-dimensional DKP matrices represent spin-0 particles. The DKP matrices for spin-1 particles are 10-dimensional.[3] The DKP-algebra can be reduced to a direct sum of irreducible subalgebras for spin‐0 and spin‐1 bosons, the subalgebras being defined by multiplication rules for the linearly independent basis elements.[5]
Duffin–Kemmer–Petiau equation
The Duffin–Kemmer–Petiau (DKP) equation, also known as Kemmer equation, is a relativistic wave equation which describes spin-0 and spin-1 particles in the description of the standard model. For particles with nonzero mass, the DKP equation is[2]
where are Duffin–Kemmer–Petiau matrices, is the particle's mass, its wavefunction, the reduced Planck constant, the speed of light. For massless particles, the term is replaced by a singular matrix that obeys the relations and .
The Duffin–Kemmer–Petiau algebra was introduced in the 1930s by R.J. Duffin,[9]N. Kemmer[10] and G. Petiau.[11]
Further reading
Fernandes, M. C. B.; Vianna, J. D. M. (1999). "On the generalized phase space approach to Duffin–Kemmer–Petiau particles". Foundations of Physics. 29 (2). Springer Science and Business Media LLC: 201–219. doi:10.1023/a:1018869505031. ISSN0015-9018. S2CID118277218.
Fainberg, V.Ya.; Pimentel, B.M. (2000). "Duffin–Kemmer–Petiau and Klein–Gordon–Fock equations for electromagnetic, Yang–Mills and external gravitational field interactions: proof of equivalence". Physics Letters A. 271 (1–2). Elsevier BV: 16–25. arXiv:hep-th/0003283. doi:10.1016/s0375-9601(00)00330-3. ISSN0375-9601. S2CID9595290.
References
^Helmstetter, Jacques; Micali, Artibano (2010-03-12). "About the Structure of Meson Algebras". Advances in Applied Clifford Algebras. 20 (3–4). Springer Science and Business Media LLC: 617–629. doi:10.1007/s00006-010-0213-0. ISSN0188-7009. S2CID122175054.
^ abSee introductory section of: Pavlov, Yu V. (2006). "Duffin–Kemmer–Petiau equation with nonminimal coupling to curvature". Gravitation & Cosmology. 12 (2–3): 205–208. arXiv:gr-qc/0610115v1.
^ abSee for example Boztosun, I.; Karakoc, M.; Yasuk, F.; Durmus, A. (2006). "Asymptotic iteration method solutions to the relativistic Duffin-Kemmer-Petiau equation". Journal of Mathematical Physics. 47 (6): 062301. arXiv:math-ph/0604040v1. doi:10.1063/1.2203429. ISSN0022-2488. S2CID119152844.
^Fischbach, Ephraim; Nieto, Michael Martin; Scott, C. K. (1973). "Duffin‐Kemmer‐Petiau subalgebras: Representations and applications". Journal of Mathematical Physics. 14 (12). AIP Publishing: 1760–1774. doi:10.1063/1.1666249. ISSN0022-2488.
^Duffin, R. J. (1938-12-15). "On The Characteristic Matrices of Covariant Systems". Physical Review. 54 (12). American Physical Society (APS): 1114. doi:10.1103/physrev.54.1114. ISSN0031-899X.