Delaporte distribution

Appearance move to sidebar hide Delaporte
Probability mass functionPlot of the PMF for various Delaporte distributions.
When α {\displaystyle \alpha } and β {\displaystyle \beta } are 0, the distribution is the Poisson.
When λ {\displaystyle \lambda } is 0, the distribution is the negative binomial.
Cumulative distribution functionPlot of the PMF for various Delaporte distributions.
When α {\displaystyle \alpha } and β {\displaystyle \beta } are 0, the distribution is the Poisson.
When λ {\displaystyle \lambda } is 0, the distribution is the negative binomial.
Parameters

λ > 0 {\displaystyle \lambda >0} (fixed mean)

α , β > 0 {\displaystyle \alpha ,\beta >0} (parameters of variable mean)
Support k ∈ { 0 , 1 , 2 , … } {\displaystyle k\in \{0,1,2,\ldots \}}
PMF ∑ i = 0 k Γ ( α + i ) β i λ k − i e − λ Γ ( α ) i ! ( 1 + β ) α + i ( k − i ) ! {\displaystyle \sum _{i=0}^{k}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{k-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(k-i)!}}}
CDF ∑ j = 0 k ∑ i = 0 j Γ ( α + i ) β i λ j − i e − λ Γ ( α ) i ! ( 1 + β ) α + i ( j − i ) ! {\displaystyle \sum _{j=0}^{k}\sum _{i=0}^{j}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{j-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(j-i)!}}}
Mean λ + α β {\displaystyle \lambda +\alpha \beta }
Mode { z , z + 1 { z ∈ Z } : z = ( α − 1 ) β + λ ⌊ z ⌋ otherwise {\displaystyle {\begin{cases}z,z+1&\{z\in \mathbb {Z} \}:\;z=(\alpha -1)\beta +\lambda \\\lfloor z\rfloor &{\textrm {otherwise}}\end{cases}}}
Variance λ + α β ( 1 + β ) {\displaystyle \lambda +\alpha \beta (1+\beta )}
Skewness See #Properties
Excess kurtosis See #Properties
MGF e λ ( e t − 1 ) ( 1 − β ( e t − 1 ) ) α {\displaystyle {\frac {e^{\lambda (e^{t}-1)}}{(1-\beta (e^{t}-1))^{\alpha }}}}

The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science. It can be defined using the convolution of a negative binomial distribution with a Poisson distribution. Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the λ {\displaystyle \lambda } parameter, and a gamma-distributed variable component, which has the α {\displaystyle \alpha } and β {\displaystyle \beta } parameters. The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959, although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders, where it was called the Formel II distribution.

Properties

The skewness of the Delaporte distribution is:

λ + α β ( 1 + 3 β + 2 β 2 ) ( λ + α β ( 1 + β ) ) 3 2 {\displaystyle {\frac {\lambda +\alpha \beta (1+3\beta +2\beta ^{2})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{\frac {3}{2}}}}}

The excess kurtosis of the distribution is:

λ + 3 λ 2 + α β ( 1 + 6 λ + 6 λ β + 7 β + 12 β 2 + 6 β 3 + 3 α β + 6 α β 2 + 3 α β 3 ) ( λ + α β ( 1 + β ) ) 2 {\displaystyle {\frac {\lambda +3\lambda ^{2}+\alpha \beta (1+6\lambda +6\lambda \beta +7\beta +12\beta ^{2}+6\beta ^{3}+3\alpha \beta +6\alpha \beta ^{2}+3\alpha \beta ^{3})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{2}}}}

References

  1. ^ Panjer, Harry H. (2006). "Discrete Parametric Distributions". In Teugels, Jozef L.; Sundt, Bjørn (eds.). Encyclopedia of Actuarial Science. John Wiley & Sons. doi:10.1002/9780470012505.tad027. ISBN 978-0-470-01250-5.
  2. ^ a b c Johnson, Norman Lloyd; Kemp, Adrienne W.; Kotz, Samuel (2005). Univariate discrete distributions (Third ed.). John Wiley & Sons. pp. 241–242. ISBN 978-0-471-27246-5.
  3. ^ Vose, David (2008). Risk analysis: a quantitative guide (Third, illustrated ed.). John Wiley & Sons. pp. 618–619. ISBN 978-0-470-51284-5. LCCN 2007041696.
  4. ^ Delaporte, Pierre J. (1960). "Quelques problèmes de statistiques mathématiques poses par l'Assurance Automobile et le Bonus pour non sinistre" . Bulletin Trimestriel de l'Institut des Actuaires Français (in French). 227: 87–102.
  5. ^ von Lüders, Rolf (1934). "Die Statistik der seltenen Ereignisse" . Biometrika (in German). 26 (1–2): 108–128. doi:10.1093/biomet/26.1-2.108. JSTOR 2332055.

Further reading

External links