In the article on Covering relation, we will thoroughly explore all facets of this topic. Covering relation is a topic of great importance and interest, which covers relevant aspects in various areas of life. Throughout this article, we will analyze in detail its impact on society, its evolution over time, as well as the different perspectives on the matter. We will delve into its meaning, its implications and its relevance today, thus providing a comprehensive vision that allows readers to know in depth everything related to Covering relation.
Let be a set with a partial order .
As usual, let be the relation on such that if and only if and .
Let and be elements of .
Then covers, written ,
if and there is no element such that . Equivalently, covers if the interval is the two-element set .
When , it is said that is a cover of . Some authors also use the term cover to denote any such pair in the covering relation.
Examples
In a finite linearly ordered set {1, 2, ..., n}, i + 1 covers i for all i between 1 and n − 1 (and there are no other covering relations).
In the Boolean algebra of the power set of a set S, a subset B of S covers a subset A of S if and only if B is obtained from A by adding one element not in A.
In Young's lattice, formed by the partitions of all nonnegative integers, a partition λ covers a partition μ if and only if the Young diagram of λ is obtained from the Young diagram of μ by adding an extra cell.
On the real numbers with the usual total order ≤, the cover set is empty: no number covers another.
Properties
If a partially ordered set is finite, its covering relation is the transitive reduction of the partial order relation. Such partially ordered sets are therefore completely described by their Hasse diagrams. On the other hand, in a dense order, such as the rational numbers with the standard order, no element covers another.