Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.
Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(n2) and O(n log n) may be the difference between days and seconds of computation.
The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computeraided design and manufacturing (CAD/CAM), but many problems in computational geometry are classical in nature, and may come from mathematical visualization.
Other important applications of computational geometry include robotics (motion planning and visibility problems), geographic information systems (GIS) (geometrical location and search, route planning), integrated circuit design (IC geometry design and verification), computeraided engineering (CAE) (mesh generation), and computer vision (3D reconstruction).
The main branches of computational geometry are:
Although most algorithms of computational geometry have been developed (and are being developed) for electronic computers, some algorithms were developed for unconventional computers (e.g. optical computers )
The primary goal of research in combinatorial computational geometry is to develop efficient algorithms and data structures for solving problems stated in terms of basic geometrical objects: points, line segments, polygons, polyhedra, etc.
Some of these problems seem so simple that they were not regarded as problems at all until the advent of computers. Consider, for example, the Closest pair problem:
One could compute the distances between all the pairs of points, of which there are n(n1)/2, then pick the pair with the smallest distance. This bruteforce algorithm takes O(n2) time; i.e. its execution time is proportional to the square of the number of points. A classic result in computational geometry was the formulation of an algorithm that takes O(n log n). Randomized algorithms that take O(n) expected time, as well as a deterministic algorithm that takes O(n log log n) time, have also been discovered.
The core problems in computational geometry may be classified in different ways, according to various criteria. The following general classes may be distinguished.
Static problemIn the problems of this category, some input is given and the corresponding output needs to be constructed or found. Some fundamental problems of this type are:
The computational complexity for this class of problems is estimated by the time and space (computer memory) required to solve a given problem instance.
Geometric query problemsIn geometric query problems, commonly known as geometric search problems, the input consists of two parts: the search space part and the query part, which varies over the problem instances. The search space typically needs to be preprocessed, in a way that multiple queries can be answered efficiently.
Some fundamental geometric query problems are:
If the search space is fixed, the computational complexity for this class of problems is usually estimated by:
For the case when the search space is allowed to vary, see "Dynamic problems".
Dynamic problemsYet another major class is the dynamic problems, in which the goal is to find an efficient algorithm for finding a solution repeatedly after each incremental modification of the input data (addition or deletion input geometric elements). Algorithms for problems of this type typically involve dynamic data structures. Any of the computational geometric problems may be converted into a dynamic one, at the cost of increased processing time. For example, the range searching problem may be converted into the dynamic range searching problem by providing for addition and/or deletion of the points. The dynamic convex hull problem is to keep track of the convex hull, e.g., for the dynamically changing set of points, i.e., while the input points are inserted or deleted.
The computational complexity for this class of problems is estimated by:
Some problems may be treated as belonging to either of the categories, depending on the context. For example, consider the following problem.
In many applications this problem is treated as a singleshot one, i.e., belonging to the first class. For example, in many applications of computer graphics a common problem is to find which area on the screen is clicked by a pointer. However, in some applications, the polygon in question is invariant, while the point represents a query. For example, the input polygon may represent a border of a country and a point is a position of an aircraft, and the problem is to determine whether the aircraft violated the border. Finally, in the previously mentioned example of computer graphics, in CAD applications the changing input data are often stored in dynamic data structures, which may be exploited to speedup the pointinpolygon queries.
In some contexts of query problems there are reasonable expectations on the sequence of the queries, which may be exploited either for efficient data structures or for tighter computational complexity estimates. For example, in some cases it is important to know the worst case for the total time for the whole sequence of N queries, rather than for a single query. See also "amortized analysis".
This branch is also known as geometric modelling and computeraided geometric design (CAGD).
Core problems are curve and surface modelling and representation.
The most important instruments here are parametric curves and parametric surfaces, such as Bézier curves, spline curves and surfaces. An important nonparametric approach is the levelset method.
Application areas of computational geometry include shipbuilding, aircraft, and automotive industries.
Below is the list of the major journals that have been publishing research in geometric algorithms. Please notice with the appearance of journals specifically dedicated to computational geometry, the share of geometric publications in generalpurpose computer science and computer graphics journals decreased.
Computer science  

Note: This template roughly follows the 2012 ACM Computing Classification System.  
Hardware  
Computer systems organization  
Networks  
Software organization  
Software notations and tools  
Software development  
Theory of computation  
Algorithms  
Mathematics of computing  
Information systems 

Security  
Human–computer interaction  
Concurrency  
Artificial intelligence  
Machine learning  
Graphics  
Applied computing 

Authority control databases: National 
