Compound of two snub cubes

In today's article we will explore all facets of Compound of two snub cubes, a topic that has captured the attention of many people around the world. From its impact on society to its historical relevance, Compound of two snub cubes is a topic that leaves no one indifferent. Throughout this article, we will discover the different perspectives that exist on Compound of two snub cubes, as well as the implications it has on our daily lives. Whether on a personal, cultural or scientific level, Compound of two snub cubes invites us to reflect on fundamental aspects of our existence. Read on to embark on a fascinating journey through this intriguing topic.

Compound of two snub cubes
Type Uniform compound
Index UC68
Schläfli symbol βr{4,3}
Coxeter diagram
Polyhedra 2 snub cubes
Faces 16+48 triangles
12 squares
Edges 120
Vertices 48
Symmetry group octahedral (Oh)
Subgroup restricting to one constituent chiral octahedral (O)

This uniform polyhedron compound is a composition of the 2 enantiomers of the snub cube. As a holosnub, it is represented by Schläfli symbol βr{4,3} and Coxeter diagram .

The vertex arrangement of this compound is shared by a convex nonuniform truncated cuboctahedron, having rectangular faces, alongside irregular hexagons and octagons, each alternating with two edge lengths.

Together with its convex hull, it represents the snub cube-first projection of the nonuniform snub cubic antiprism.

Cartesian coordinates

Cartesian coordinates for the vertices are all the permutations of

(±1, ±ξ, ±1/ξ)

where ξ is the real solution to

which can be written

or approximately 0.543689. ξ is the reciprocal of the tribonacci constant.

Equally, the tribonacci constant, t, just like the snub cube, can compute the coordinates as:

(±1, ±t, ±1/t)

Truncated cuboctahedron

This compound can be seen as the union of the two chiral alternations of a truncated cuboctahedron:

A geometric construction of the Tribonacci constant (AC), with compass and marked ruler, according to the method described by Xerardo Neira.

See also

References

  • Skilling, John (1976), "Uniform Compounds of Uniform Polyhedra", Mathematical Proceedings of the Cambridge Philosophical Society, 79 (3): 447–457, doi:10.1017/S0305004100052440, MR 0397554.