In today's world, Clean Energy Project has become a topic of great interest and relevance. Over time, this topic has been the subject of debate, research and analysis by experts and scholars from various disciplines. From its origins to its impact on today's society, Clean Energy Project has played a fundamental role in the development of humanity. In this article, we will explore this exciting topic in depth, examining its different aspects and its influence in different areas. Through rigorous analysis and a comprehensive vision, we will seek to shed light on this topic to better understand its importance and relevance in today's world.
BOINC based World Community Grid volunteer computing subproject
The Clean Energy Project (CEP) was a virtual high-throughput discovery and design effort for the next generation of plastic solar cell materials that has finished. It studies millions of candidate structures to identify suitable compounds for the harvesting of renewable energy from the sun and for other organic electronic applications. It ran on the BOINC platform.
On June 24, 2013, the Clean Energy Project released its database to the public and the research community. The release was featured on the White House Blog[1] and by several news organizations including the MIT Technology Review.[2] The database contains 150 million density functional theory calculations on 2.3 million molecules.
Publications
C. Amador-Bedolla, R. Olivares-Amaya, J. Hachmann, A. Aspuru-Guzik, Towards Materials Informatics for Organic Photovoltaics, in Informatics for Materials Science and Engineering, K. Rajan, Ed., Elsevier, Amsterdam (2013). In press.
R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R.S. Sánchez-Carrera, L. Vogt, A. Aspuru-Guzik, Accelerated Computational Discovery of High-performance Materials for Organic Photovoltaics by Means of Cheminformatics. Energy & Environmental Science 4 (2011), 4849–4861.[3]
A.N. Sokolov, S. Atahan-Evrenk, R. Mondal, H.B. Akkerman, R.S. Sánchez-Carrera, S. Granados-Focil, J. Schrier, S.C.B. Mannsfeld, A.P. Zoombelt, Z. Bao, A. Aspuru-Guzik, From Computational Discovery to Experimental Characterization of a High Hole Mobility Organic Crystal. Nature Communications 2 (2011), 437.[4]