In this article, we will explore Augmented triangular prism in depth and its impact on our daily lives. From its origin to its contemporary relevance, we will analyze how Augmented triangular prism has evolved over time and how it has affected different aspects of society. We will also examine the different perspectives and opinions related to Augmented triangular prism, as well as its role in the current context. Through this comprehensive analysis, we hope to provide a complete and rich insight into Augmented triangular prism, providing the reader with a deeper understanding of this topic.
Augmented triangular prism | |
---|---|
![]() | |
Type | Johnson J48 – J49 – J50 |
Faces | 6 triangles 2 squares |
Edges | 13 |
Vertices | 7 |
Vertex configuration | |
Symmetry group | |
Properties | convex |
Net | |
![]() |
In geometry, the augmented triangular prism is a polyhedron constructed by attaching an equilateral square pyramid onto the square face of a triangular prism. As a result, it is an example of Johnson solid. It can be visualized as the chemical compound, known as capped trigonal prismatic molecular geometry.
The augmented triangular prism can be constructed from a triangular prism by attaching an equilateral square pyramid to one of its square faces, a process known as augmentation.[1] This square pyramid covers the square face of the prism, so the resulting polyhedron has 6 equilateral triangles and 2 squares as its faces.[2] A convex polyhedron in which all faces are regular is Johnson solid, and the augmented triangular prism is among them, enumerated as 49th Johnson solid .[3]
An augmented triangular prism with edge length has a surface area, calculated by adding six equilateral triangles and two squares' area:[2] Its volume can be obtained by slicing it into a regular triangular prism and an equilateral square pyramid, and adding their volume subsequently:[2]
It has three-dimensional symmetry group of the cyclic group of order 4. Its dihedral angle can be calculated by adding the angle of an equilateral square pyramid and a regular triangular prism in the following:[4]
In the geometry of chemical compounds, a polyhedron may commonly visualize an atom cluster surrounding a central atom. The capped trigonal prismatic molecular geometry describes clusters for which this polyhedron is an augmented triangular prism.[5] An example of such compound is the potassium heptafluorotantalate.[6]